|
Home
News
How ?
Download
Bench
Status
Reserve
Submit
Results
Producers
Math.
Algo.
Stat.
Fun
Links
Credits
Feedback |
|
How many prime numbers appear in a sequence ?
Based on Bateman and Horn conjecture [1], which is the quantitative form of the
famous "Hypothesis H" of Sierpinski and Schinzel [7], and on the distribution
of the factors of the generalized Fermat numbers [3], Harvey Dubner and Yves
Gallot proposed in [2] the following conjecture:
Daniel Shanks computed C1 and C2
to high precision [5] [6]. Recently, Peter Moree indicated a method for the
computation of the Cn by representing them as a
product of Dirichlet L-series. Yves Gallot used this method to compute
precisely C1 , C2, ..., C17
[4]. These results are used for the following estimates.
The estimates and actual values of the number of known GF primes are shown in
the following table. We assume that the distribution of GF primes is
approximated by a Poisson distribution and the error is defined by (Act. -
Est.) / sqrt(Est.).
n |
N |
B |
Cn |
estimate |
actual |
error |
1 |
2 |
109 |
1.3728134628182460091 |
34903256 |
34900212 |
-0.5 |
2 |
4 |
108 |
2.6789638797482848822 |
3859187 |
3857543 |
-0.8 |
3 |
8 |
107 |
2.0927941299213300766 |
173942 |
174368 |
+1.0 |
4 |
16 |
107 |
3.6714321229370805404 |
152575 |
152447 |
-0.3 |
5 |
32 |
107 |
3.6129244862406263646 |
75072 |
74951 |
-0.4 |
6 |
64 |
107 |
3.9427412953667399869 |
40963 |
41059 |
+0.5 |
7 |
128 |
9 106 |
3.1089645815159960954 |
14638 |
14586 |
-0.4 |
8 |
256 |
7 106 |
7.4348059978748568639 |
13848 |
13890 |
+0.4 |
9 |
512 |
6 106 |
7.4890662797425630491 |
6042 |
6138 |
+1.2 |
10 |
1024 |
5 106 |
8.0193434982306030483 |
2730 |
2614 |
-2.2 |
11 |
2048 |
4 106 |
7.2245969049003170901 |
1000 |
1000 |
0.0 |
12 |
4096 |
3 106 |
8.4253498784241795333 |
446 |
435 |
-0.5 |
13 |
8192 |
2.6 106 |
8.4678857199473387694 |
196 |
190 |
-0.4 |
14 |
16384 |
2.7 106 |
8.0096845351535704233 |
96 |
89 |
-0.7 |
15 |
32768 |
2.2 106 |
5.8026588347082479139 |
29 |
35 |
+1.1 |
16 |
65536 |
1.1 105 |
11.195714229391949615 |
1.8 |
2 |
+0.2 |
17 |
131072 |
3 104 |
11.004300588768807590 |
0.3 |
0 |
-
|
References
-
P. T. Bateman and R. A. Horn, A Heuristic Asymptotic Formula
Concerning the Distribution of Prime Numbers, Math. Comp. 16
(1962), 363-367.
MR 26:6139
-
H. Dubner and Y. Gallot, Distribution of Generalized Fermat Prime
numbers, Math. Comp. 71 (2002), 825-832.
http://www.ams.org/jourcgi/jour-getitem?pii=S0025-5718-01-01350-3
-
H. Dubner and W. Keller, Factors of generalized Fermat numbers,
Math. Comp. 64 (1995), 397-405.
MR 95c:11010
-
Y. Gallot, A Problem on the Conjecture Concerning the Distribution
of Generalized Fermat Prime numbers (a new method for the search for large
primes), Preprint.
-
D. Shanks, On the Conjecture of Hardy & Littlewood concerning
the Number of Primes of the Form n2+a,
Math. Comp. 14 (1960), 321-332.
MR 22:10960
-
D. Shanks, On Numbers of the Form n4+1,
Math. Comp. 15 (1961), 186-189.
MR 22:10941
-
A. Schinzel and W. Sierpinski, Sur certaines hypothèses concernant
les nombres premiers, Acta Arith. 4 (1958), 185-208,
Erratum 5 (1959), 259.
MR 21:4936
|