Largest | Twin | Sophie Germain | Mersenne | Factorial/Primorial | Cullen | Woodall
(see also the pages: The top 20: largest known primes)
On November 17, 2003, the computer of Michael Shafer, one of the members of the Great Internet Mersenne Prime Search, discovered the new prime record: 220996011-1, running George Woltman's program Prime95 connected to Scott Kurowski's Internet PrimeNet Server.
date | prime | digits | who |
---|---|---|---|
2003 |
220996011- 1 |
6320430 | Shafer, Woltman, Kurowski, et. al. (GIMPS) |
2001 |
213466917- 1 |
4053946 |
Cameron, Woltman, Kurowski, et. al. (GIMPS) |
1999 |
26972593- 1 |
2098960 |
Hajratwala, Woltman, Kurowski, et. al. (GIMPS) |
1998 |
23021377- 1 |
909526 |
Clarkson, Woltman, Kurowski, et. al. (GIMPS) |
1997 |
22976221- 1 |
895932 |
Spence, Woltman, et. al. (GIMPS) |
1996 |
21398269- 1 |
420921 |
Armengaud, Woltman, et. al. (GIMPS) |
1996 |
21257787- 1 |
378632 |
Slowinski and Gage |
1994 |
2859433- 1 |
258716 |
Slowinski and Gage |
1992 |
2756839- 1 |
227832 |
Slowinski and Gage |
1989 |
391581 . 2216193- 1 |
65087 |
Brown, Noll, Parady, Smith G., Smith J. and Zarantonello |
1985 |
2216091- 1 |
65050 |
Slowinski |
1983 |
2132049- 1 |
39751 |
Slowinski |
1982 |
286243- 1 |
25962 |
Slowinski |
1979 |
244497- 1 |
13395 |
Nelson and Slowinski |
1979 |
223209- 1 |
6987 |
Noll |
1978 |
221701- 1 |
6533 |
Nickel and Noll |
1971 |
219937- 1 |
6002 |
Tuckerman |
1963 |
211213- 1 |
3376 |
Gillies |
1961 |
24423- 1 |
1332 |
Hurwitz |
1957 |
23217- 1 |
969 |
Riesel |
1952 |
22281- 1 |
687 |
Robinson |
1952 |
2607- 1 |
183 |
Robinson |
1951 |
180 . (2127- 1)2+ 1 |
79 |
Miller and Wheeler |
1951 |
(2148+ 1) / 17 |
44 |
Ferrier |
1876 |
2127- 1 |
39 |
Lucas |
1867 |
(253+ 1) / (3 . 107) |
14 |
Landry |
1851 |
999999000001 |
12 |
Looff |
1771 |
231- 1 |
10 |
Euler |
(see also the pages: The top 20: twin primes)
Twin primes are primes of the form p and p+2, i.e., they differ by two.
On September 28, 2002, Daniel Papp discovered a 51090 digits twin prime record 33218925.2169690+/-1, with a set of different programs: Paul Jobling's NewPGen, George Woltman's PRP and Yves Gallot's Proth.exe. David Underbakke and Phil Carmody found the previous record, on May 17, 2001.
date | prime | digits | who |
---|---|---|---|
2002 | 33218925 . 2169690 +/- 1 | 51090 | Papp, Jobling, Woltman, and Gallot |
2001 | 318032361 . 2107001+/- 1 |
32220 | Underbakke, Carmody, Jobling, Woltman, and PrimeForm |
2001 | 1807318575 . 298305+/- 1 |
29603 | Underbakke, Carmody, Jobling, Woltman, and Gallot |
2000 |
665551035 . 280025+/- 1 |
24099 |
Underbakke, Carmody, Jobling, Woltman, and Gallot |
2000 |
1693965 . 266443+/- 1 |
20008 |
La Barbera, Jobling and Gallot |
2000 |
83475759 . 264955+/- 1 |
19562 |
Underbakke, Jobling and Gallot |
2000 |
4648619711505 . 260000+/- 1 |
18075 |
Wassing, Indlekofer and Járai |
2000 |
2409110779845 . 260000+/- 1 |
18075 |
Wassing, Indlekofer and Járai |
1999 |
361700055 . 239020+/- 1 |
11755 |
Lifchitz |
1998 |
835335 . 239014+/- 1 |
11751 |
Ballinger and Gallot |
1995 |
242206083 . 238880+/- 1 |
11713 |
Járai and Indlekofer |
1995 |
570918348 . 105120+/- 1 |
5129 |
Dubner |
1994 |
697053813 . 216352+/- 1 |
4932 |
Járai and Indlekofer |
1993 |
1692923232 . 104020+/- 1 |
4030 |
Dubner |
1993 |
4655478828 . 103429+/- 1 |
3439 |
Dubner |
1989 |
1706595 . 211235+/- 1 |
3389 |
Brown, Noll, Parady, Smith G., Smith J. and Zarantonello |
(see also the pages: The top 20: Sophie Germain primes)
A Sophie Germain prime is an odd prime p for which 2p+1 is also a prime.
On January 18, 2003, David Underbakke discovered a 34547digits Sophie Germain prime record 2540041185.2114729-1, with a set of different programs: his own TwinGen, George Woltman's PRP and Yves Gallot's Proth.exe. Michael Angel, Dirk Augustin and Paul Jobling found the previous record on November 18, 2002.
date | prime | digits | who |
---|---|---|---|
2003 | 2540041185 . 2114729-1 | 34547 | Underbakke, Woltman, and Gallot |
2002 | 18912879 . 298395 - 1 | 29628 | Angel, Augustin, Jobling, Woltman, and PrimeForm |
2002 | 1213822389 . 281131- 1 | 24432 | Angel, Augustin, Jobling, Woltman, and Gallot |
2001 | 109433307 . 266452- 1 | 20013 | Underbakke, Jobling, Woltman, and Gallot |
2000 |
3714089895285 . 260000- 1 |
18075 |
Wassing, Indlekofer and Járai |
2000 |
18131 . 22817# - 1 |
9853 |
Lifchitz |
1999 |
18458709 . 232611- 1 |
9825 |
Kerchner and Gallot |
1999 |
14516877 . 224176- 1 |
7285 |
Kerchner and Gallot |
1998 |
72021 . 223630- 1 |
7119 |
Gallot |
1995 |
2375063906985 . 219380- 1 |
5847 |
Járai and Indlekofer |
1995 |
8069496435 . 105072- 1 |
5082 |
Dubner |
1995 |
470943129 . 216352- 1 |
4932 |
Járai and Indlekofer |
1994 |
5415312903 . 104526- 1 |
4536 |
Dubner |
1993 |
47013511545 . 102999- 1 |
3010 |
Dubner |
1993 |
21063042 . 102110- 1 |
2118 |
Dubner |
1992 |
2926924 . 102032+ 1 |
2039 |
Dubner |
1990 |
713851138 . 101854+ 1 |
1863 |
Dubner |
1987 |
39051 . 26001- 1 |
1812 |
Keller |
(see also the pages: The top 20: Mersenne primes)
Mersenne primes are of the form 2p-1
On November 17, 2003, the computer of Michael Shafer, one of the members of the Great Internet Mersenne Prime Search, found the 40th known Mersenne prime: 220996011-1, running George Woltman's program Prime95 connected to Scott Kurowski's Internet PrimeNet Server.
date | prime | digits | who |
---|---|---|---|
2003 | 220996011- 1 | 6320430 | Shafer, Woltman, Kurowski, et. al. (GIMPS) |
2001 |
213466917- 1 |
4053946 |
Cameron, Woltman, Kurowski, et. al. (GIMPS) |
1999 |
26972593- 1 |
2098960 |
Hajratwala, Woltman, Kurowski, et. al. (GIMPS) |
1998 |
23021377- 1 |
909526 |
Clarkson, Woltman, Kurowski, et. al. (GIMPS) |
1997 |
22976221- 1 |
895932 |
Spence, Woltman, et. al. (GIMPS) |
1996 |
21398269- 1 |
420921 |
Armengaud, Woltman, et. al. (GIMPS) |
1996 |
21257787- 1 |
378632 |
Slowinski and Gage |
1994 |
2859433- 1 |
258716 |
Slowinski and Gage |
1992 |
2756839- 1 |
227832 |
Slowinski and Gage |
1985 |
2216091- 1 |
65050 |
Slowinski |
1983 |
2132049- 1 |
39751 |
Slowinski |
1982 |
286243- 1 |
25962 |
Slowinski |
1979 |
244497- 1 |
13395 |
Nelson and Slowinski |
1979 |
223209- 1 |
6987 |
Noll |
1978 |
221701- 1 |
6533 |
Nickel and Noll |
1971 |
219937- 1 |
6002 |
Tuckerman |
1963 |
211213- 1 |
3376 |
Gillies |
1961 |
24423- 1 |
1332 |
Hurwitz |
1957 |
23217- 1 |
969 |
Riesel |
1952 |
22281- 1 |
687 |
Robinson |
1952 |
2607- 1 |
183 |
Robinson |
1876 |
2127- 1 |
39 |
Lucas |
1771 |
231- 1 |
10 |
Euler |
(see also the pages: The top 20: factorial/primorial primes)
Numbers of the form n!+/-1 are called factorial primes.
date | prime | digits | who |
---|---|---|---|
2002 | 34790! - 1 | 142891 | Marchal, Carmody, Kuosa and PrimeForm |
2001 |
21480! - 1 |
83727 |
Davis, Kuosa and PrimeForm |
1998 |
6917! - 1 |
23560 |
Caldwell and Gallot |
1993 |
3610! - 1 |
11277 |
Caldwell |
1992 |
3507! - 1 |
10912 |
Caldwell |
1992 |
1963! - 1 |
5614 |
Caldwell and Dubner |
1984 |
1477! + 1 |
4042 |
Dubner |
1983 |
872! + 1 |
2188 |
Dubner |
1981 |
469! - 1 |
1051 |
Buhler, Crandall and Penk |
Primorial Primes are of the form 2.3.5.p +1.
date | prime | digits | who |
---|---|---|---|
2001 |
392113# + 1 |
169966 |
Heuer and PrimeForm |
2001 |
366439# + 1 |
158936 |
Heuer and PrimeForm |
2000 |
145823# + 1 |
63142 |
Anderson, Robinson and PrimeForm |
1999 |
42209# + 1 |
18241 |
Caldwell and PrimeForm |
1993 |
24029# + 1 |
10387 |
Caldwell |
1989 |
18523# + 1 |
8002 |
Dubner |
1987 |
13649# + 1 |
5862 |
Dubner |
1986 |
11549# + 1 |
4951 |
Dubner |
1984 |
4787# + 1 |
2038 |
Dubner |
1982 |
2657# + 1 |
1115 |
Buhler, Crandall and Penk |
(see also the pages: The top 20: Cullen primes)
The Cullen Primes are of the form n 2n + 1.
On September 30, 1998, Masakatu Morii discovered a 145072 digits Cullen prime record with Yves Gallot's Proth.exe : 481899.2481899+1. Darren Smith found the previous record, also using the same program, on July 31, 1998.
date | prime | digits | who |
---|---|---|---|
1998 |
481899 . 2481899+ 1 |
145072 |
Morii and Gallot |
1998 |
361275 . 2361275+ 1 |
108761 |
Smith D. and Gallot |
1998 |
262419 . 2262419+ 1 |
79002 |
Smith D. and Gallot |
1997 |
90825 . 290825+ 1 |
27347 |
Young |
1997 |
32469 . 232469+ 1 |
9779 |
Morii |
1984 |
18496 . 218496+ 1 |
5573 |
Keller |
1957 |
141 . 2141+ 1 |
45 |
Robinson |
1905 |
1 . 21+ 1 |
1 |
Cullen |
(see also the pages: The top 20: Woodall primes)
The Woodall Primes are of the form n 2n - 1.
On September 25, 2000, Manfred Toplic discovered a 200815 digits Woodall prime record with Yves Gallot's Proth.exe : 667071.2667071-1. Kevin O'Hare found the previous record, also using the same program, on May 1, 1998.
date | prime | digits | who |
---|---|---|---|
2000 |
667071 . 2667071- 1 |
200815 |
Toplic and Gallot |
1998 |
151023 . 2151023- 1 |
45468 |
O'Hare and Gallot |
1998 |
143018 . 2143018- 1 |
43058 |
Ballinger and Gallot |
1997 |
98726 . 298726- 1 |
29725 |
Young |
1987 |
18885 . 218885- 1 |
5690 |
Keller |
1984 |
12379 . 212379- 1 |
3731 |
Keller |
1952 |
512 . 2512- 1 = 2521- 1 |
157 |
Robinson and Riesel |
In order to help us maintain these lists, please let us know of any corrections, information about non evocated periods (date, prime, digits number, discoverer), comments, suggestions, related WWW links.
Page by Lucile and Yves Gallot <galloty@wanadoo.fr>
The correct URL for this page is http://perso.wanadoo.fr/yves.gallot/primes/chrrcds.html