The Chronology of Prime Number Records

Contents:

Largest | Twin | Sophie Germain | Mersenne | Factorial/Primorial | Cullen | Woodall

Comments and Suggestions


The Largest Known Prime Records

(see also the pages: The top 20: largest known primes)

On November 17, 2003, the computer of Michael Shafer, one of the members of the Great Internet Mersenne Prime Search, discovered the new prime record: 220996011-1, running George Woltman's program Prime95 connected to Scott Kurowski's Internet PrimeNet Server

date prime digits who

2003

220996011- 1

6320430 Shafer, Woltman, Kurowski, et. al. (GIMPS)

2001

213466917- 1

4053946

Cameron, Woltman, Kurowski, et. al. (GIMPS)

1999

26972593- 1

2098960

Hajratwala, Woltman, Kurowski, et. al. (GIMPS)

1998

23021377- 1

909526

Clarkson, Woltman, Kurowski, et. al. (GIMPS)

1997

22976221- 1

895932

Spence, Woltman, et. al. (GIMPS)

1996

21398269- 1

420921

Armengaud, Woltman, et. al. (GIMPS)

1996

21257787- 1

378632

Slowinski and Gage

1994

2859433- 1

258716

Slowinski and Gage

1992

2756839- 1

227832

Slowinski and Gage

1989

391581 . 2216193- 1

65087

Brown, Noll, Parady, Smith G., Smith J. and Zarantonello

1985

2216091- 1

65050

Slowinski

1983

2132049- 1

39751

Slowinski

1982

286243- 1

25962

Slowinski

1979

244497- 1

13395

Nelson and Slowinski

1979

223209- 1

6987

Noll

1978

221701- 1

6533

Nickel and Noll

1971

219937- 1

6002

Tuckerman

1963

211213- 1

3376

Gillies

1961

24423- 1

1332

Hurwitz

1957

23217- 1

969

Riesel

1952

22281- 1

687

Robinson

1952

2607- 1

183

Robinson

1951

180 . (2127- 1)2+ 1

79

Miller and Wheeler

1951

(2148+ 1) / 17

44

Ferrier

1876

2127- 1

39

Lucas

1867

(253+ 1) / (3 . 107)

14

Landry

1851

999999000001

12

Looff

1771

231- 1

10

Euler

The Twin Prime Records

(see also the pages: The top 20: twin primes)

Twin primes are primes of the form p and p+2, i.e., they differ by two.

On September 28, 2002, Daniel Papp discovered a 51090 digits twin prime record 33218925.2169690+/-1, with a set of different programs: Paul Jobling's NewPGen, George Woltman's PRP and Yves Gallot's Proth.exe. David Underbakke and Phil Carmody found the previous record, on May 17, 2001.

date prime digits who
2002 33218925 . 2169690 +/- 1 51090 Papp, Jobling, Woltman, and Gallot
2001

318032361 . 2107001+/- 1

32220 Underbakke, Carmody, Jobling, Woltman, and PrimeForm
2001

1807318575 . 298305+/- 1

29603 Underbakke, Carmody, Jobling, Woltman, and Gallot

2000

665551035 . 280025+/- 1

24099

Underbakke, Carmody, Jobling, Woltman, and Gallot

2000

1693965 . 266443+/- 1

20008

La Barbera, Jobling and Gallot

2000

83475759 . 264955+/- 1

19562

Underbakke, Jobling and Gallot

2000

4648619711505 . 260000+/- 1

18075

Wassing, Indlekofer and Járai

2000

2409110779845 . 260000+/- 1

18075

Wassing, Indlekofer and Járai

1999

361700055 . 239020+/- 1

11755

Lifchitz

1998

835335 . 239014+/- 1

11751

Ballinger and Gallot

1995

242206083 . 238880+/- 1

11713

Járai and Indlekofer

1995

570918348 . 105120+/- 1

5129

Dubner

1994

697053813 . 216352+/- 1

4932

Járai and Indlekofer

1993

1692923232 . 104020+/- 1

4030

Dubner

1993

4655478828 . 103429+/- 1

3439

Dubner

1989

1706595 . 211235+/- 1

3389

Brown, Noll, Parady, Smith G., Smith J. and Zarantonello

The Sophie Germain Prime Records

(see also the pages: The top 20: Sophie Germain primes)

A Sophie Germain prime is an odd prime p for which 2p+1 is also a prime.

On January 18, 2003, David Underbakke discovered a 34547digits Sophie Germain prime record 2540041185.2114729-1, with a set of different programs: his own TwinGen, George Woltman's PRP and Yves Gallot's Proth.exe. Michael Angel, Dirk Augustin and Paul Jobling found the previous record on November 18, 2002.

date prime digits who
2003 2540041185 . 2114729-1 34547 UnderbakkeWoltman, and Gallot
2002 18912879 . 298395 - 1 29628 Angel, Augustin, Jobling, Woltman, and PrimeForm
2002 1213822389 . 281131- 1 24432 Angel, Augustin, Jobling, Woltman, and Gallot
2001 109433307 . 266452- 1 20013 Underbakke, Jobling, Woltman, and Gallot

2000

3714089895285 . 260000- 1

18075

Wassing, Indlekofer and Járai

2000

18131 . 22817# - 1

9853

Lifchitz

1999

18458709 . 232611- 1

9825

Kerchner and Gallot

1999

14516877 . 224176- 1

7285

Kerchner and Gallot

1998

72021 . 223630- 1

7119

Gallot

1995

2375063906985 . 219380- 1

5847

Járai and Indlekofer

1995

8069496435 . 105072- 1

5082

Dubner

1995

470943129 . 216352- 1

4932

Járai and Indlekofer

1994

5415312903 . 104526- 1

4536

Dubner

1993

47013511545 . 102999- 1

3010

Dubner

1993

21063042 . 102110- 1

2118

Dubner

1992

2926924 . 102032+ 1

2039

Dubner

1990

713851138 . 101854+ 1

1863

Dubner

1987

39051 . 26001- 1

1812

Keller

The Mersenne Prime Records

(see also the pages: The top 20: Mersenne primes)

Mersenne primes are of the form 2p-1

On November 17, 2003, the computer of Michael Shafer, one of the members of the Great Internet Mersenne Prime Search, found the 40th known Mersenne prime: 220996011-1, running George Woltman's program Prime95 connected to Scott Kurowski's Internet PrimeNet Server.  

date prime digits who
2003 220996011- 1 6320430 Shafer, Woltman, Kurowski, et. al. (GIMPS)

2001

213466917- 1

4053946

Cameron, Woltman, Kurowski, et. al. (GIMPS)

1999

26972593- 1

2098960

Hajratwala, Woltman, Kurowski, et. al. (GIMPS)

1998

23021377- 1

909526

Clarkson, Woltman, Kurowski, et. al. (GIMPS)

1997

22976221- 1

895932

Spence, Woltman, et. al. (GIMPS)

1996

21398269- 1

420921

Armengaud, Woltman, et. al. (GIMPS)

1996

21257787- 1

378632

Slowinski and Gage

1994

2859433- 1

258716

Slowinski and Gage

1992

2756839- 1

227832

Slowinski and Gage

1985

2216091- 1

65050

Slowinski

1983

2132049- 1

39751

Slowinski

1982

286243- 1

25962

Slowinski

1979

244497- 1

13395

Nelson and Slowinski

1979

223209- 1

6987

Noll

1978

221701- 1

6533

Nickel and Noll

1971

219937- 1

6002

Tuckerman

1963

211213- 1

3376

Gillies

1961

24423- 1

1332

Hurwitz

1957

23217- 1

969

Riesel

1952

22281- 1

687

Robinson

1952

2607- 1

183

Robinson

1876

2127- 1

39

Lucas

1771

231- 1

10

Euler

The Factorial/Primorial Prime Records

(see also the pages: The top 20: factorial/primorial primes)

Numbers of the form n!+/-1 are called factorial primes.

date prime digits who
2002 34790! - 1 142891 Marchal, CarmodyKuosa and PrimeForm

2001

21480! - 1

83727

Davis, Kuosa and PrimeForm

1998

6917! - 1

23560

Caldwell and Gallot

1993

3610! - 1

11277

Caldwell

1992

3507! - 1

10912

Caldwell

1992

1963! - 1

5614

Caldwell and Dubner

1984

1477! + 1

4042

Dubner

1983

872! + 1

2188

Dubner

1981

469! - 1

1051

Buhler, Crandall and Penk

Primorial Primes are of the form 2.3.5.p +1.

date prime digits who

2001

392113# + 1

169966

Heuer and PrimeForm

2001

366439# + 1

158936

Heuer and PrimeForm

2000

145823# + 1

63142

Anderson, Robinson and PrimeForm

1999

42209# + 1

18241

Caldwell and PrimeForm

1993

24029# + 1

10387

Caldwell

1989

18523# + 1

8002

Dubner

1987

13649# + 1

5862

Dubner

1986

11549# + 1

4951

Dubner

1984

4787# + 1

2038

Dubner

1982

2657# + 1

1115

Buhler, Crandall and Penk

The Cullen Prime Records

(see also the pages: The top 20: Cullen primes)

The Cullen Primes are of the form n 2n + 1.

On September 30, 1998, Masakatu Morii discovered a 145072 digits Cullen prime record with Yves Gallot's Proth.exe : 481899.2481899+1. Darren Smith found the previous record, also using the same program, on July 31, 1998.

date prime digits who

1998

481899 . 2481899+ 1

145072

Morii and Gallot

1998

361275 . 2361275+ 1

108761

Smith D. and Gallot

1998

262419 . 2262419+ 1

79002

Smith D. and Gallot

1997

90825 . 290825+ 1

27347

Young

1997

32469 . 232469+ 1

9779

Morii

1984

18496 . 218496+ 1

5573

Keller

1957

141 . 2141+ 1

45

Robinson

1905

1 . 21+ 1

1

Cullen

The Woodall Prime Records

(see also the pages: The top 20: Woodall primes)

The Woodall Primes are of the form n 2n - 1.

On September 25, 2000, Manfred Toplic discovered a 200815 digits Woodall prime record with Yves Gallot's Proth.exe : 667071.2667071-1. Kevin O'Hare found the previous record, also using the same program, on May 1, 1998.

date prime digits who

2000

667071 . 2667071- 1

200815

Toplic and Gallot

1998

151023 . 2151023- 1

45468

O'Hare and Gallot

1998

143018 . 2143018- 1

43058

Ballinger and Gallot

1997

98726 . 298726- 1

29725

Young

1987

18885 . 218885- 1

5690

Keller

1984

12379 . 212379- 1

3731

Keller

1952

512 . 2512- 1 = 2521- 1

157

Robinson and Riesel

Comments and Suggestions

In order to help us maintain these lists, please let us know of any corrections, information about non evocated periods (date, prime, digits number, discoverer), comments, suggestions, related WWW links.


Page by Lucile and Yves Gallot <galloty@wanadoo.fr>

The correct URL for this page is http://perso.wanadoo.fr/yves.gallot/primes/chrrcds.html