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1. Introduction

When we search for prime numbers in a sequence, we would like to estimate
how many are prime in a fixed range with a simple method before starting a long
computation. Today, our mathematical knowledge in this domain is about zero.
Only the problem of the sequences of the form a · n + b was solved by Hadamard
and La Vallée-Poussin on the based of genius Riemann work. For the rest, we
have conjectures: but many of them are strong and today very well verified by
computations. The purpose of this paper is to report known results to estimate the
number of primes in a sequence.

Let Sf(n)(N) the finite sequence f(1), f(2), ..., f(N).
πf(n)(N) denotes the number of prime numbers in Sf(n)(N).

2. The form a · n + b

Theorem 2.1 (Prime number theorem).

πn(N) ∼
N

∑

n=2

1
log n

∼
∫ N

2

dt
log t

∼ N
log N

It was established, independently, by La Vallée-Poussin and Hadamard in 1896
(see, for example, [7]).
Theorem 2.2. If (a, b) = 1 then

πa·n+b(N) ∼ 1
ϕ(a)

∫ aN+b

2

dt
log t

∼ a
ϕ(a)

∫ N

2

dt
log t

.

It was proved by La Vallée-Poussin in 1896 by combining prime number theorem
and Dirichlet theorem. Note that current notation is different:
let πa,b(x) := |{p ≤ x : p ≡ b (mod a)}|, then πa,b(x) ∼ 1

ϕ(a)

∫ x
2

dt
log t .

The notation

πa·n+b(N) ∼ a
ϕ(a)

N
∑

n=1
an+b>1

1
log(an + b)

is more adapted to a generalization.
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3. Polynomials

In 1962, Bateman and Horn indicated a quantitative form [3] of the famous
”Hypothesis H” of Schinzel and Sierpiński [10] (see [9, Ch. 6] for interesting details).
If we just consider one irreducible polynomial and change notation, then we obtain:
Conjecture 3.1. Let f(n) be an irreducible polynomial, with integral coefficients
and a positive leading coefficient and let w(p) be the number of solutions of the
congruence f(x) ≡ 0 (mod p). Then

πf(n)(N) ∼ Cf

N
∑

n=1
f(n)>1

1
log f(n)

∼ Cf

deg f

∫ N

2

dt
log t

where

Cf =
∏

p prime

1− w(p)/p
1− 1/p

Many computations verified that the number of primes of polynomial forms
agree well with the conjecture up to a fixed N . Some values of Cf were computed
precisely: for example Shanks computed Cn2+1 = 1.37281346... [11].

4. Weight of sequences

We would like to extend this conjecture to any function, then we define:
Definition 4.1. Let

Cf (N) =
πf(n)(N)

∑N
n=1

f(n)>1

1
log f(n)

Cf (N) is called the weight of the sequence Sf(n)(N). If Cf = limN→∞ Cf (N)
exists, it is called the weight of the infinite sequence Sf(n).

In 1959, Riesel found a non trivial function such that Cf(n) = 0. This function is
509203 · 2n − 1. In 1960, Sierpiński proved that there exist infinitely many integers
k such that k · 2n +1 is composite for every positive n (see [9, Ch. 5.VII]). In 1947,
Mills discovered that we can construct a number θ, which is equal to 1.3064..., such
that f(n) = [θ3n

] is prime for every n (see [9, Ch. 3.II]). Then Cf can be infinite.

5. Estimation of the weight

Let uf (N, P ) be the number of elements of Cf (N) which are not strictly divisible
by a prime p < P . If Cf (N) is a sequence of random numbers and P << f(n), then
the result should be closed to vf (N, P ) =

∏

p<P (1 − 1/p) · N ∼ N/(eγ log P ). If
we make the assumption that the weight is mainly due to the divisibility by factors
smaller than P0, then we have:

Cf (N) ≈ eγ log P0 × uf (N, P0)
N

and if Cf exists and the limit converges quickly, we can select N0 such that:

Cf ≈
eγ log P0 × uf (N0, P0)

N0

For example, let f(n) = n4 + 1, P0 = 1000 and N0 = 105. We obtain the
approximation Cf ≈ 2.64 and the precise value of Cf predicted by Bateman and
Horn conjecture is 2.67896... [12].
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6. The form k · 2n ± 1

For fixed n, the distribution can be evaluated with La Vallée-Poussin’s theorem.
Then we just consider the case k fixed, which is still an open question. We make
the assumption that Ck·2n±1 exists for all k and use the notation Ck+ = Ck·2n+1
and Ck− = Ck·2n−1.

With the approximation k · 2n ± 1 ∼ k · 2n, we have:

Conjecture 6.1.

πk·2n+1(N) ∼ Ck+

N
∑

n=1

1
n log 2 + log k

∼ Ck+

∫ N

1

dt
t log 2 + log k

and
∫ N

1

dt
t log 2 + log k

=
log(N log 2 + log k)

log 2
− log(log 2 + log k)

log 2

then

(6.1) πk·2n+1(N) ∼ Ck+ log2
N + log2 k
1 + log2 k

and

(6.2) πk·2n−1(N) ∼ Ck− log2
N + log2 k
1 + log2 k

.

The estimated and actual values of the numbers of primes of the form k · 2n + 1
for 3 ≤ k ≤ 19 and N = 200000 are shown in Table 1. The weights were evaluated
with P0 = N0 = 104.

Table 1. Comparison between the estimates of the number of
primes of the form k ·2n +1 and the actual number of primes found

k weight estimate actual
3 2.446 40 34
5 1.017 16 19
7 2.446 38 29
9 2.689 42 49

11 1.576 24 20
13 1.088 17 16
15 3.340 51 41
17 0.755 12 16
19 0.960 15 17

We could be tempted to try to find a formula for the weight similar to the one
for the polynomials. Let op be the order of 2 modulo p and let w(p) be the number
of solutions of the congruence k · 2x + 1 ≡ 0 (mod p) in the range 0, 1, ..., op − 1. A
possible formula for the weight is Ck+ =?

∏

p prime
1−w(p)/op

1−1/p . But the values gener-
ated by this formula are not correct estimates. The reason is that gcd(op1 , op2) 6= 1
for many couples (p1, p2). Then the probabilities 1−w(p)/op are dependent and a
simple product cannot be used as numerator because of conditional probabilities.
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7. Application to the Sierpiński problem

An integer k such that k ·2n +1 is composite for every n ≥ 1 is called a Sierpiński
number. It is conjectured that the integer k = 78557 is the smallest Sierpiński
number. To prove the conjecture, it suffices to exhibit a prime k · 2n + 1 for each
k < 78557 (see [9, Ch. 5.VII] and [6] for details). Today, this had been done for all
except for 17 values.

Wilfrid Keller defined the frequency fm to be the number of k giving their first
prime k · 2n + 1 for an exponent n in the interval 2m ≤ n < 2m+1 [2][8]. Jack
Brennen proposed a method to compute the probability that at least one prime of
the form k · 2n + 1 exists for each of the remaining k values, with n ≤ N [4]. The
author extended the computation to the 39278 candidates and used it to estimate
the frequencies fm.

Let λk,N be the expected number of primes of the form k · 2n +1 for fixed k and
1 ≤ n < N . It can be evaluated by (6.1). By assuming a Poisson distribution, the
probability that the range contains no prime is pk,N = e−λk,N . Then the chance of
solving Sierpiński problem at N is P (N) =

∏

k(1− pk,N ). The expected number of
remaining candidates is E(N) =

∑

k pk,N . Then the estimate of the frequency fm

is f̂m = E(2m)− E(2m+1).

Table 2. Comparison between the estimates of the frequencies
and the actual frequencies found (Eq. (6.1))

m 0 1 2 3 4 5 6 7 8 9
fm 7238 10194 9582 6272 3045 1445 685 331 195 114
f̂m 6271 8467 8925 7008 4222 2158 1045 515 267 147
m 10 11 12 13 14 15 16 17 18 19
fm 47 34 26 11 18 12 5 ≥ 5 ≥ 2 ?
f̂m 85 52 34 22 15 11 7.8 5.7 4.3 3.3

The estimated and actual values of the frequencies are shown in Table 2. The
weights were evaluated with P0 = N0 = 104. If we exclude the small values for m,
for which the estimates are not accurate, we note that the estimates are translated
in comparison with the actual frequencies. We can translate the estimates by using

(7.1) πk·2n+1(N) ∼ Ck+ log2
1.5N + log2 k

1 + log2 k

in place of (6.1). The new estimated values are shown in Table 3.

Table 3. Comparison between the estimates of the frequencies
and the actual frequencies found (Eq. (7.1))

m 0 1 2 3 4 5 6 7 8 9
fm 7238 10194 9582 6272 3045 1445 685 331 195 114
f̂m 11031 9037 8031 5351 2886 1413 687 348 187 106
m 10 11 12 13 14 15 16 17 18 19
fm 47 34 26 11 18 12 5 ≥ 5 ≥ 2 ?
f̂m 64 40 26 18 12 8.9 6.5 4.8 3.7 2.8
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Note that the author found no theoretical justification to Eq. (7.1), however it
is indicated because it produces an accurate estimate.

In Table 4 we list the expected status of the current and future search.

Table 4. Number of remaining k values expected at N (Eq. (7.1))

N 216 217 218 219 220 221 222 223 224 225 226 227

E(N) 30.7 24.2 19.3 15.7 12.8 10.6 8.9 7.5 6.3 5.4 4.6 4.0

For large N , (6.1) and (7.1) give about the same chance of solving Sierpiński
problem at N . Note also that for large N , the variance V (N) =

∑

k pk,N (1− pk,N )
is approximately E(N).

We have a 50% chance of solving Sierpiński problem at N = 243 ≈ 1013. We
have a 5% chance of solving it at N = 230 ≈ 109. We have a 95% chance of solving
it at N = 281 ≈ 1024. Note also that the chances at 220, 221 and 222 are respectively
about 10−6, 10−5 and 10−4.

The weights of the remaining k values are listed in Table 5. Note that the
smallest weight is 0.044 for k = 51173 but hopefully 51173 · 229 + 1 is prime (and
51173 · 23089 + 1!).

Table 5. Weights of the remaining k values

k 4847 5359 10223 19249 21181 22699 24737 27653 28433
weight 0.20 0.25 0.23 0.08 0.19 0.07 0.20 0.12 0.11

k 33661 44131 46157 54767 55459 65567 67607 69109
weight 0.19 0.31 0.11 0.28 0.25 0.09 0.07 0.18

8. Application to the Riesel problem

An integer k such that k · 2n − 1 is composite for every n ≥ 1 is called a Riesel
number. It is conjectured that the integer k = 509203 is the smallest Riesel number
(see [9, Ch. 5.VII], [5] and [1] for details). Today, a prime k · 2n− 1 had been found
for all k < 509203 except for 123 values.

The method proposed for the Sierpiński problem was applied to the Riesel prob-
lem. The estimated and actual values of the frequencies are shown in Table 6. The
weights were evaluated with P0 = N0 = 104.

Table 6. Comparison between the estimates of the frequencies
and the actual frequencies found (Eq. (6.2))

m 0 1 2 3 4 5 6 7 8 9
fm 39867 59460 62311 45177 24478 11668 5360 2728 1337 785
f̂m 35326 50272 56873 48204 30868 16301 7954 3896 1996 1084
m 10 11 12 13 14 15 16 17 18 19
fm 467 289 191 125 87 62 38 35 ≥ 11 ≥ 2
f̂m 624 378 240 159 108 76 54 40 30 23
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We note that the estimates are translated in comparison with the actual fre-
quencies. So we again translate the estimates by using

(8.1) πk·2n−1(N) ∼ Ck− log2
1.5N + log2 k

1 + log2 k

in place of (6.2). The new estimated values are shown in Table 7. This again
produces an accurate estimate.

Table 7. Comparison between the estimates of the frequencies
and the actual frequencies found (Eq. (8.1))

m 0 1 2 3 4 5 6 7 8 9
fm 39867 59460 62311 45177 24478 11668 5360 2728 1337 785
f̂m 63198 55829 53549 38265 21586 10748 5219 2617 1387 779
m 10 11 12 13 14 15 16 17 18 19
fm 467 289 191 125 87 62 38 35 ≥ 11 ≥ 2
f̂m 463 289 188 126 88 62 45 34 25 19

In Table 8 we list the expected status of the current and future search.

Table 8. Number of remainning k values expected at N (Eq. (7.1))

N 216 217 218 219 220 221 222 223 224 225 226 227

E(N) 209 163 130 104 85 70 58 49 41 35 30 26

We have a 50% chance of solving Riesel problem at N = 270 ≈ 1021. We have a
5% chance of solving it at N = 247 ≈ 1014. We have a 95% chance of solving it at
N = 2134 ≈ 1040. Note also that the chances at 220, 225 and 230 are respectively
about 10−40, 10−16 and 10−8.

References

1. R. Ballinger and W. Keller, The Riesel Problem: Definition and Status,
http://www.prothsearch.net/rieselprob.html

2. R. Ballinger and W. Keller, The Sierpiński Problem: Definition and Status,
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