
CYCLOTOMIC POLYNOMIALS AND PRIME NUMBERS

YVES GALLOT

Abstract. The sequence of numbers generated by the cyclotomic polynomi-
als Φn(2) contains the Mersenne numbers 2p − 1 and the Fermat numbers
22m

+ 1. Does an algorithm involving O(n) modular operations exist to test
the primality of Φn(b)?

1. Cyclotomic polynomials

Let n be a positive integer and let ζn be the complex number e2πi/n.
The nth cyclotomic polynomial is, by definition

(1.1) Φn(x) =
∏

1≤k<n
gcd(k,n)=1

(x− ζk
n)

Clearly the degree of Φn(x) is ϕ(n), where ϕ is the Euler function.
We have

(1.2) xn − 1 =
∏

d|n

Φd(x)

and conversely, by using the Möbius function, we can write

(1.3) Φn(x) =
∏

d|n

(xd − 1)µ( n
d ).
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Φn(x) is a monic polynomial with integer coefficients. It can be shown that
Φn(x) is irreductible over Q. The first sixteen of them are given below:

Φ1(x) = x− 1 Φ2(x) = x + 1

Φ3(x) = x2 + x + 1 Φ4(x) = x2 + 1

Φ5(x) = x4 + x3 + x2 + x + 1 Φ6(x) = x2 − x + 1

Φ7(x) = x6 + x5 + x4 + x3 + x2 + x + 1 Φ8(x) = x4 + 1

Φ9(x) = x6 + x3 + 1 Φ10(x) = x4 − x3 + x2 − x + 1

Φ11(x) = x10 + x9 + x8 + · · ·+ x + 1 Φ12(x) = x4 − x2 + 1

Φ13(x) = x12 + x11 + x10 + · · ·+ x + 1 Φ14(x) = x6 − x5 + x4 − x3 + x2 − x + 1

Φ15(x) = x8 − x7 + x5 − x4 + x3 − x + 1 Φ16(x) = x8 + 1

Theorem 1.1. If p is a prime then

Φpm(x) = Φm(xp) when p divides m,

Φpm(x) =
Φm(xp)
Φm(x)

when p does not divide m.

Proof.

Φpm(x) =
∏

d|pm
p|d

(xd − 1)µ( pm
d )

∏

d|pm
p-d

(xd − 1)µ( pm
d )

= Φm(xp)
∏

d|pm
p-d

(xd − 1)µ( pm
d )

If p | m then pm
d = ap2 and µ(pm

d ) = 0.
If p - m then µ(pm

d ) = µ(p)µ(m
d ) = −µ(m

d ). �

It follows that if n1, n2, . . . , nk are positive integers then

Φnα1
1 nα2

2 ...nαk
k

(x) = Φn1·n2...nk(xnα1−1
1 nα2−1

2 ...nαk−1
k )

and if p is prime and r ≥ 1, then

Φpr (x) =
xpr − 1

xpr−1 − 1
.

Theorem 1.2. If q > 1 is an odd integer then

Φ2q(x) = Φq(−x).

Proof.

Φ2q(x) =
∏

d|2q

(xd − 1)µ( 2q
d ) =

∏

d|q

(xd − 1)µ( 2q
d )(x2d − 1)µ( 2q

2d )

=
∏

d|q

(xd + 1)µ( q
d ) =

∏

d|q

−((−x)d − 1)µ( q
d ).

If q 6= 1 is odd then ϕ(q) is even. �

Theorem 1.3. If n > 1 then Φn(0) = 1.
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Proof. By induction with xn − 1 = Φn(x)(x− 1)
∏

d|n
d 6=1,n

Φd(x) and x = 0. �

Theorem 1.4. If n > 1 then

Φn(1) = p when n is a power of a prime p,

Φn(1) = 1 otherwise.

Proof. If n is not a prime power, let n = prm where p is prime and such that
(p,m) = 1. Φprm(1) = Φpm(1r−1) = Φm(1p)

Φm(1) and the result follows by induction
because Φm(1) 6= 0. �

2. Factors of Φn(b)

Theorem 2.1. Let n = pm with p prime. If p | (b − 1) then p | Φn(b). All other
prime factors of Φn(b) are of the form kn + 1.

Proof. See [8, Theorem 48]. �

The other forms can have some small factors:
Φ18(2) = 26 − 23 + 1 = 57 = 3× 19
Φ20(2) = 28 − 26 + 24 − 22 + 1 = 205 = 5× 41
Φ21(2) = 212 − 211 + 29 − 28 + 26 − 24 + 23 − 2 + 1 = 2359 = 7× 337
then Theorem 2.1 cannot be extended to any n.
Theorem 2.2. Every prime factor of bn − 1 must either be of the form kn + 1 or
be a divisor of bd − 1, where d < n and d | n.

Proof. See [9, Theorem 2.4.3]. �

Since Φn(b) | (bn − 1), conditions of Theorem 2.2 are true for any factor of a
cyclotomic polynomial, but we have a better result:
Theorem 2.3. If p is a prime factor of Φn(b) and is a divisor of bd − 1, where
d < n, then p2 | (bn − 1) and p | n.

Proof. [6] Let r > 0 such that pr | (bn − 1) but pr+1 - (bn − 1). If pr | (bd − 1) then
p - bn−1

bd−1 . But by Eq.1.2, p | Φn(b) | bn−1
bd−1 , a contradiction.

Let er the order of b modulo pr. If pr | (bm−1) then er | m. Since pr | (ber+1−1),
we have er+1 = ker. Let ber = 1+αpr, then by the binomial theorem bker ≡ 1+αkpr

(mod pr+1). If p | α, er+1 = er, else p | k. Therefore either er = e1 = n (in which
case n | (p− 1)) or p | n. �

Thus we have:
Theorem 2.4. Every prime factor of Φn(b) must either be of the form kn + 1 or
be a divisor of n and of bd − 1, where d | n.

According to [7, Page 268], this result was proved by Legendre in 1830.

3. Primality test of Φn(b) by factoring Φn(b)− 1

From Theorem 1.3 we have Φn(x) − 1 = xrP (x) where r ≥ 1. If r > deg(P )/2
and if the complete factorization of b is known then the primality of Φn(b) can be
proved with theorems of [2].
Theorem 3.1. [3] If n = 2α3β then a theorem of Pocklington [2, Th 4][7, p. 52] is
sufficient to test the primality of Φn(b) when b is factorized.
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Proof. If β = 0 then Φn(b)− 1 = b2α
. If α = 0 then Φn(b)− 1 = b3β−1

(b3β−1
+ 1).

Else Φn(b) = Φ6(b2α−1+3β−1
) and Φn(b)− 1 = b2α−1+3β−1

(b2α−1+3β−1 − 1). �

No other case of polynomial factorization by xr large enough is known:
Conjecture 3.2. [3] If Φn(x)− 1 = xrP (x) and n 6= 2α3β then r < deg(P )/2.

Note that if n has many divisors, Φn(b)− 1 has often enough polynomial factors
to complete the primality proof for some small b. See [4] for criteria of divisibility
of Φn(x)− 1 by Φk(x).

Note also the generalization of the well-known results about Fermat and Mersenne
numbers 2Fm−1 ≡ 1 (mod Fm) and 2Mp−1 ≡ 1 (mod Mp):
Theorem 3.3. If Φn(b) has no prime factor p ≤ n then bΦn(b)−1 ≡ 1 (mod Φn(b)).

Proof. By Eq.1.2, bΦn(b)−1 − 1 =
∏

d|(Φn(b)−1) Φd(b). By Theorem 2.4, if Φn(b) has
no prime factor p ≤ n then Φn(b) = kn+1. Therefore Φn(b) divides bΦn(b)−1−1. �

4. Primes of the form Φn(2)

If n = 2m then Φ2m(2) = 22m−1
+ 1 = Fm−1 (Fermat number). If p is prime

then Φp(2) = 2p − 1 = Mp (Mersenne number). If p 6= 2 then Φ2p(2) = Φp(−2) =
(2p + 1)/3.

The first probable primes of the form Φn(2) were computed by the author. The
primality of these numbers was proved for n ≤ 3000 by the author with the im-
plementation of Adleman-Pomerance-Rumely-Cohen-Lenstra’s test of the UBASIC
package [5] and for 3000 < n ≤ 6500 by Phil Carmody with Titanix [1] (see Table 1
and Table 2).

Fermat and Mersenne primes are two sparse subclasses of the dense class of the
primes of the form Φn(2). But how to prove the primality of Φn(2) with only O(n)
operations modulo Φn(2) when n is not a prime or a power of 2?

Table 1. Values of n for which Φn(2) is prime, for 1 ≤ n ≤ 6500

2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 19, 22, 24, 26, 27, 30, 31, 32,
33, 34, 38, 40, 42, 46, 49, 56, 61, 62, 65, 69, 77, 78, 80, 85, 86, 89, 90, 93,
98, 107, 120, 122, 126, 127, 129, 133, 145, 150, 158, 165, 170, 174, 184, 192,
195, 202, 208, 234, 254, 261, 280, 296, 312, 322, 334, 345, 366, 374, 382,
398, 410, 414, 425, 447, 471, 507, 521, 550, 567, 579, 590, 600, 607, 626,
690, 694, 712, 745, 795, 816, 897, 909, 954, 990, 1106, 1192, 1224, 1230,
1279, 1384, 1386, 1402, 1464, 1512, 1554, 1562, 1600, 1670, 1683, 1727,
1781, 1834, 1904, 1990, 1992, 2008, 2037, 2203, 2281, 2298, 2353, 2406,
2456, 2499, 2536, 2838, 3006, 3074, 3217, 3415, 3418, 3481, 3766, 3817,
3927, 4167, 4253, 4423, 4480, 5053, 5064, 5217, 5234, 5238, 5250, 5325,
5382, 5403, 5421, 6120.
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