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Abstract. Is it possible to improve the convergence properties of the series
for the computation of the Cn involved in the distribution of the generalized
Fermat prime numbers? If the answer to this question is yes, then the search
for a large prime number P will be C · log(P ) times faster than today, where
C ≈ 0.01.

1. Introduction

In [2], based on Bateman and Horn conjecture [1][11] and on the distribution of
the factors of the generalized Fermat numbers [3], Harvey Dubner and the author
proposed the following conjecture:
Conjecture 1.1. If En(B) is the number of primes of the form Fb,n = b2n

+ 1 for
2 ≤ b ≤ B, then

En(B) ∼ Cn

2n

∫ B

2

dt
log t

where the constant Cn is the infinite product

Cn =
∏

p odd prime

(1− an(p)
p )

(1− 1
p )

=
∏

p odd prime

(

1− an(p)− 1
p− 1

)

and where

an(p) =

{

2n if p ≡ 1 (mod 2n+1),
0 otherwise.

The actual distribution of generalized Fermat primes is in significant agreement
with the values predicted by the conjecture for some polynomials of degree as large
as 216.

Today, we know that C0 = 1 and in [9][10] Shanks computed precisely C1 and
C2. We indicate in this paper a method for the computation of the first Cn; however
the method becomes unpractical for n > 20. Today, no relation is known for a fast
computation of other Cn and we have to search for the smallest primes of the form
k · 2n+1 + 1 to estimate them.

What will be the consequences, if a formula, involving only some functions and
series and not the primes of the form k · 2n+1 + 1, exists to compute precisely Cn?
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The search for a large prime of the form k · 2n + 1 will be about n/200 times faster
than it is today. For n ≈ 107, the search will be 50000 times faster!

The chance for a number of the form N = k · bn ± 1 to be prime depends on its
size but is virtually independent of k, b, n as long as N passed a trial division test
up to the bound log(N). Today, to find a prime, we have to check the primality of
all the numbers that passed a trial division test. In practice, we have to test about
0.02 · log(P ) numbers to find a prime P .

If Cn can be computed quickly and precisely, the minima of the sequence Cn will
indicate to us where the primes of the form k ·2n+1, with small k, are. For example,
the estimates for {C27, C28, C29, C30} are {19.5, 19.2, 17.8, 22.0}: it indicates that it
is probably faster to search for a prime of the form k · 2n + 1 for n = 29 + 1 rather
than for the other values. And we find that the smallest primes of each form are
12 · 228 + 1, 6 · 229 + 1, 3 · 230 + 1 and 35 · 231 + 1.

If Cn can be used as an indicator, then we will just have to test two or three
numbers to find a prime of the form 3 · 2n + 1 or 5 · 2n + 1 rather than, today,
about 0.02 log(2)n numbers: the search for a large prime number P will be about
0.01 · log(P ) times faster if the indicator Cn can be evaluated quickly and if we test
the form k · 2n + 1.

The following sections indicate a formula for Cn but that is quickly unpractical
for large n. Can you improve this formula and speed up the prime number search?

2. Definitions

Let the infinite products

Cn(s) =
∏

p odd prime

1− an(p)p−s

1− p−s

and

Pn(s) =
∏

p≡1(2n+1)

(

1− p−s

1 + p−s

)2n−1

.

Let χ be a Dirichlet character. The L-series attached to χ is defined by

L(s, χ) =
∞
∑

n=1

χ(n)
ns =

∏

p

(1− χ(p)p−s)−1, Re(s) > 1.

Let X(m) be the character group (Z/2mZ)∗.
For m = 1, only the trivial character χ0 is defined and L(s, χ0) is the Dirichlet

lambda function λ(s) =
∑∞

n=0(2n + 1)−s = (1− 2−s)ζ(s).
For m = 2, there are two characters: the trivial one and the character χ4 defined

by χ4(n) = (−4
n ), where ( a

n ) is the Kronecker symbol with the definition (a
2 ) = 0

for a even. L(s, χ4) =
∑∞

n=0(−1)n(2n + 1)−s is the Dirichlet beta function β(s).
For m ≥ 3, the group (Z/2mZ)∗ is generated by −1 and 5. Thus a character

is uniquely determined by its value in −1 and 5. The order of −1 is 2 and the
order of 5 is ϕ(2m)/2. For every a ∈ {0, 1} and b ∈ {1, · · · , ϕ(2m)/2}, we can
associate the character χa,b uniquely determined by χa,b(−1) = (−1)a and χa,b(5) =
exp(2πib/2m−2).

Note that for m = 3, the two primitive characters are real. There L-series are
L(s, χ0,1) =

∑∞
n=1(

2
n )n−s and L(s, χ1,1) =

∑∞
n=1(

−2
n )n−s.
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3. Shanks’ formula

In [9], Daniel Shanks developed a method to compute with accuracy and effi-
ciently C1 and in [10], he used a similar method to compute C2.

Lemma 3.1. If a is a positive even integer and if |x| < 1
a , then

1− ax =
∞
∏

n=1

(

1− xn

1 + xn

)ba(n)

where

(3.1) ba(n) =
1
2n

∑

d|n
d odd

µ(d)an/d.

Proof. We expand both sides in Maclaurin series and identify the corresponding
coefficients. This yields the condition

2
∑

d|n
d odd

ba

(n
d

) n
d

= an.

Now applying the Möbius inversion formula we obtain (3.1). �

For s > 1,

Cn(s) = λ(s)
∏

p≡1(2n+1)

(

1− 2n

ps

)

= λ(s)Pn(s)
∏

p≡1(2n+1)

(

1− 2n

ps

)(

1 + p−s

1− p−s

)2n−1

.

By lemma 3.1 and since b2n(1) = 2n−1, we obtain the relation

Cn(s) = λ(s)Pn(s)
∏

p≡1(2n+1)

∞
∏

k=2

(

1− p−ks

1 + p−ks

)b2n (k)

.

It can be rewritten as

Formula 3.2.

Cn(s) = λ(s)Pn(s)
∞
∏

k=2

Pn(ks)
b2n (k)

2n−1 .

4. Computation of the constant C1

It is easy to verify that

P1(s) =
λ(2s)

λ(s)β(s)
.

We have from (3.2)

C1(s) = λ(s)
λ(2s)

λ(s)β(s)

∞
∏

k=2

(

λ(2ks)
λ(ks)β(ks)

)b2(k)

.
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The product converges for s = 1, λ(2) = π2

8 and β(1) = π
4 then

(4.1) C1 =
π
2

∞
∏

k=2

(

λ(2k)
λ(k)β(k)

)b2(k)

.

5. Computation of the constant C2

It is easy to verify that

P2(s) =
λ(2s)2

λ(s)β(s)L(s, χ0,1)L(s, χ1,1)
.

We have from (3.2)

C2(s) = λ(s)
λ(2s)2

λ(s)β(s)L(s, χ0,1)L(s, χ1,1)

∞
∏

k=2

(

λ(2ks)2

λ(ks)β(ks)L(ks, χ0,1)L(ks, χ1,1)

)
b4(k)

2

.

The product converges for s = 1, L(1, χ1,1) = π
2
√

2
and L(1, χ0,1) = log(1+

√
2)√

2
then

(5.1) C2 =
π2

4 log(1 +
√

2)

∞
∏

k=2

(

λ(2k)2

λ(k)β(k)L(k, χ0,1)L(k, χ1,1)

)
b4(k)

2

.

6. Computation of Cn

Pieter Moree indicated to the author [7] a generalization of Shanks’ formula:
Theorem 6.1.

Pn(s) =
Mn(2s)2

Ln(s)
where

Ln(s) =
∏

χ∈X(n+1)

L(s, χ)

and

M1(s) =
√

λ(s)

and for n ≥ 2

Mn(s) =
∏

χ∈X(n)
χ(−1)=1

L(s, χ).

Proof. An elementary proof (that requires no algebraic number theory) is indicated
here.

Let G(s, χ) =
∑

p

∑

k=1 χ(pk)p−ks

k . G(s, χ) provides an unambiguous definition
for log L(s, χ) [5, p. 256]. For n ≥ 2,

log
Mn(2s)2

Ln(s)
= 2

∑

χ∈X(n)
χ(−1)=1

G(2s, χ)−
∑

χ∈X(n+1)

G(s, χ)

=
∑

p

∑

k=1

(

2
∑

χ∈X(n)
χ(−1)=1

χ(pk)
p−2ks

k
−

∑

χ∈X(n+1)

χ(pk)
p−ks

k

)

.
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∑

χ∈X(n+1) χ(pk) = ϕ(2n+1)δ2n+1(1, pk), where δm(a, b) = 1 if a ≡ b (mod m)
and δm(a, b) = 0 otherwise. 2

∑

χ∈X(n)
χ(−1)=1

χ(pk) =
∑

χ∈X(n)(χ(−pk) + χ(pk)) =

ϕ(2n)(δ2n(−1, pk) + δ2n(1, pk)) = ϕ(2n)δ2n+1(1, p2k). Thus,

log
Mn(2s)2

Ln(s)
=

∑

p

∑

k=1

(

2nδ2n+1(1, p2k)
p−2ks

2k
− 2nδ2n+1(1, pk)

p−ks

k

)

= −2n
∑

k odd

∑

pk≡1(2n+1)

p−ks

k
.

Let ω be the order of p modulo 2n+1. ω divides ϕ(2n+1) = 2n and if pk ≡ 1
(mod 2n+1), ω divides k odd then ω = 1 and p ≡ 1 (mod 2n+1). It follows that

log
Mn(2s)2

Ln(s)
= −2n

∑

p≡1(2n+1)

∑

k odd

p−ks

k

= 2n−1
∑

p≡1(2n+1)

log
(

1− p−s

1 + p−s

)

= log Pn(s).

�

The product converges for s = 1, then we have from (3.2)
Formula 6.2.

Cn =
Mn(2)2

Ln(1)

∞
∏

k=2

(

Mn(2k)2

Ln(k)

)
b2n (k)

2n−1

,

where Ln(1) is the residue of the Dedekind zeta function of Q(ζ2n+1) at s = 1.

7. Estimates of Cn

For the computation of Ln(k), we use the relation

Ln(s) = Ln−1(s)
∏

χ∈X(n+1)
χ primitive

L(s, χ)

L0(s) =

{

1 if k = 1,
λ(k) otherwise.

and for the computation of Mn(k), n ≥ 2

Mn(s) = Mn−1(s)
∏

χ∈X(n), χ(−1)=1
χ primitive

L(s, χ)

M2(s) = λ(k).

For Re(s) > 1, L(s, χ) can be evaluated quickly by the formula

L(s, χ) = f−s
f

∑

n=1

χ(n)ζ
(

s,
n
f

)

,

where f is the conductor of χ and ζ(s, a) =
∑∞

n=0(a + n)−s is the Hurwitz zeta
function. L(1, χ) can also be evaluated as a sum of f terms by Theorem 4.9 of [12]:
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Theorem 7.1. Let χ be a non trivial Dirichlet character of conductor f and τ(χ) =
∑f

a=1 χ(a)e2πia/f be a Gauss sum. Then

L(1, χ) =

{

πi τ(χ)
f2

∑f
a=1 χ̄(a)a if χ(−1) = −1,

− τ(χ)
f

∑f
a=1 χ̄(a) log|2 sin(πa/f)| if χ(−1) = 1.

Note that, by remarking that
∏

χ
τ(χ)√

fiδ = 1, we can exclude the Gauss sums
associated to f of the computation.

Because of the cancellation of the series, the usage of high precision is required.
We used Pari/GP calculator [8] and GNU MP [4] for the computation.

Table 1. Results

n 1/Ln(1) Cn

1 1.2732395447351626862 1.3728134628182460091
2 1.8393323355189883003 2.6789638797482848822
3 2.1525897547289665031 2.0927941299213300766
4 3.5915460044718845396 3.6714321229370805404
5 3.6517070262282297544 3.6129244862406263646
6 4.1255743008723022645 3.9427412953667399869
7 3.8076566382722473439 3.1089645815159960954
8 7.4360874409142208222 7.4348059978748568639
9 7.5184624012206212999 7.4890662797425630491

10 8.0721025282979537844 8.0193434982306030483
11 7.3647294084873125710 7.2245969049003170901
12 8.5063380378154203965 8.4253498784241795333
13 8.5931795231960285064 8.4678857199473387694
14 8.3718452818332958280 8.0096845351535704233
15 7.0545211775956337581 5.8026588347082479139
16 11.263974068691738207 11.195714229391949615
17 11.189718898237277808 11.004300588768807590
18 13.040977439195566699
19 13.129323890520994181

8. Future Studies

The results lead us to propose

Conjecture 8.1.
lim

n→∞
Ln(1)Cn = 1

and to use the local maxima of Ln(1) as indicators for the primes of the form
k · 2n+1 + 1.

But if theorem 7.1 is used for the computation, we cannot estimate Ln(1) or Cn

in a reasonable amount of time for n ≥ 100 and today the only probable prime that
the computation indicated is 215+1 +1 = 65537. What is interesting in the method
is that no Euclidean division was required for the computation, except some modulo
2m for the estimates of the characters. However, to become practical, a fast method
for the computation of the residue of ζQ(ζ2n+1 )(s) at s = 1 is necessary.
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Now, if we consider that the primes of the form k · 2n+1 + 1 are uniformly
distributed with a density function defined by the theorem of de la Vallée-Poussin,
we have Cn ≈ (n + 1) log 2 [6]. This result can be used to normalize our indicator.

Table 2. Estimates of 1/Ln(1)

n 1/Ln(1) (n + 1) log 2 Ln(1)(n + 1) log 2 first prime k · 2n+1 + 1
1 1.273240 1.386294 1.088793 1 · 22 + 1
2 1.839332 2.079442 1.130542 2 · 23 + 1
3 2.152590 2.772589 1.288025 1 · 24 + 1
4 3.591546 3.465736 0.964970 3 · 25 + 1
5 3.651707 4.158883 1.138887 3 · 26 + 1
6 4.125574 4.852030 1.176086 2 · 27 + 1
7 3.807657 5.545177 1.456323 1 · 28 + 1
8 7.436087 6.238325 0.838926 15 · 29 + 1
9 7.518462 6.931472 0.921927 12 · 210 + 1

10 8.072103 7.624619 0.944564 6 · 211 + 1
11 7.364729 8.317766 1.129406 3 · 212 + 1
12 8.506338 9.010913 1.059318 5 · 213 + 1
13 8.593180 9.704061 1.129275 4 · 214 + 1
14 8.371845 10.397208 1.241925 2 · 215 + 1
15 7.054521 11.090355 1.572092 1 · 216 + 1
16 11.263974 11.783502 1.046123 6 · 217 + 1
17 11.189719 12.476649 1.115010 3 · 218 + 1
18 13.040977 13.169796 1.009878 11 · 219 + 1
19 13.129324 13.862944 1.055876 13 · 220 + 1

Accorting to results of Table 2, the average behaviour of Ln(1) is [(n+1) log 2]−1

and its behaviour depends mainly on the first prime of the form k · 2n+1 + 1. We
propose
Conjecture 8.2. Let Rn be the residue of the Dedekind zeta function ζQ(ζ2n )(s) at
s = 1. We have

lim
m→∞

1
m

m
∑

n=1

Rn log 2n = 1.

There exist a constant 0 < c < 1 and a constant C > 1 such that

c ≤ Rn log 2n ≤ C

for all n.
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